MULTIIPLICATION STRATEGIIES

Traditional Algorithm New Options: Partial Products Area Model (Array) Lattice Method

Review - Distributive Property

$$
\begin{aligned}
5 \times 39 & =? \\
39 & =30+9
\end{aligned}
$$

$$
5 \times 39=(5 \times 30)+(5 \times 9)
$$

$$
=150+45
$$

$$
=195
$$

Review - Expanded Form

$$
\begin{aligned}
53 & =50+3 \\
639 & =600+30+9 \\
4,315 & =4,000+300+10+5
\end{aligned}
$$

Traditional - 1 by 3

$$
\begin{array}{r}
14 \\
639 \\
\times \quad 5 \\
3,195
\end{array}
$$

Partial Products - 1 by 3

$$
\begin{aligned}
& 639 \\
& \times 539=600+30+9 \\
& \hline 45 \\
& 150 \\
&+3000 \begin{array}{l}
5 \times 9 \\
5 \times 30 \\
5 \times 600
\end{array}
\end{aligned}
$$

Area Model - 1 by 3

$$
5 \times 639=?
$$

$$
\begin{aligned}
& \times 600+30+9 \\
& \begin{array}{|l|l|l|}
\hline 3,000 & 150 & 45 \\
\hline
\end{array} \\
& \begin{array}{r}
3,000 \\
150 \\
+45 \\
\hline 3,195
\end{array} \\
& 5 \times 639=3,195
\end{aligned}
$$

Lattice Method - 1 by 3

$$
\begin{aligned}
& 5 \times 639 \\
& 6 \\
& 3 \\
& 9 x \\
& 3
\end{aligned}
$$

$$
\begin{aligned}
& 5 \times 639=3,195
\end{aligned}
$$

Traditional - 2 by 2

$$
\begin{array}{r}
2_{1} \\
45 \\
\times 53 \\
\times \quad 53 \\
+\quad 255 \\
\hline 2,385
\end{array}
$$

Students in the upper grades will learn this algorithm.

Partial Products - 2 by 2

$$
\begin{array}{r}
45 \\
\times 53 \\
\\
120 \\
250 \\
3 \times 5 \\
3 \times 40 \\
+2,000 \\
\hline 2,385
\end{array}
$$

http://learnzillion.com/lessons/529-multiply-multidigit-numbers-using-partial-products

Area Model 2 by 2

 $45 \times 53=$?

$$
\begin{array}{r}
2,250 \\
+\quad 135 \\
\hline 2,385
\end{array}
$$

$$
45 \times 53=2,385
$$

http://learnzillion.com/lessons/528-multiply-multidigit-numbers-using-an-area-model
http://learnzillion.com/lessons/1879-use-an-area-model-to-multiply-two-digit-numbers-by-two-digit-numbers

Lattice Method - 2 by 2

$$
\begin{aligned}
& 45 \times 53=\text { ? } \\
& 45 \times 53=2,385
\end{aligned}
$$

Lattice Method with More Digits

Traditional

$$
\begin{array}{r}
21 \\
42 \\
453 \\
\times \quad 48 \\
\hline 3624 \\
+18120 \\
\hline 21744
\end{array}
$$

Khan Acadlemy.org: LATTIICE MULTIIPLICATION IDEMO
 (length~7:15)

https://www.khanacademy.org/math/arithmetic/multiplicati on-division/lattice multiplication/v/lattice-multiplication

LATTICE MULTIPLICATION: WHYYTT WORIKS

https://www.khanacademy.org/math/arithmetic/multipli cation-division/lattice multiplication/v/why-lattice-multiplication-works

Your Turn

Solve the following using a method other than the traditional
algorithm.
35×24

Bonus -Distributive Property

 Helps with Math Facts$6 \times 7=(6 \times 5)+(6 \times 2)$

$$
=30+12=42
$$

$$
5 \times 12=(5 \times 10)+(5 \times 2)
$$

$$
=50+10=60
$$

$$
8 \times 12=(8 \times 10)+(8 \times 2)
$$

$$
=80+16=96
$$

DIVISION STRATEGIES

Traditional Algorithm New Options: Partial Quotients Modeling
Chunking
Distributive Property

Division Strategies

Traditional

Check:	
	51
	$X \quad 5$ 255

Division Strategies

Use Partial Quotients

Quotients

http://learnzillion.com/lessons/28-solve-division-problems-with-remainders-using-partial-quotient

Check:
$100 \times 6=600$
$20 \times 6=120$
$3 \times 6=\frac{18}{738}$

https://www.khanacademy.org/math/arithmetic/ multiplicationdivision/partial quotient division/v/partial-quotient-division

Division Strategies

Use a Model

Division Strategies

Chunking

$72 \div 3=$
72
$-30(10 \times 3)$
42
$-30(10 \times 3)$
12
$-\frac{12}{0}(4 \times 3)$

$$
\begin{array}{r}
72 \div 3=24 \\
(10+10+4)=24
\end{array}
$$

Division Strategies

Use the Distributive Property

Your Turn

Solve the following using a method other than the traditional algorithm.

$$
6944 \div 31
$$

